Lecture 36: Backprop and ConvNets
 CS 4670 Sean Bell

http://brownsharpie.courtneygibbons.org/?p=90

Review: Setup

Review: Setup

- Goal: Find a value for parameters $\left(\theta^{(1)}, \theta^{(2)}, \ldots\right)$, so that the loss (L) is small

Review: Setup

Toy
Example:

Review: Setup

Toy
Example:

A weight somewhere in the network

Review: Setup

Toy
Example:

A weight somewhere in the network

Review: Setup

Toy
Example:

A weight somewhere in the network

Review: Setup

A weight somewhere in the network

Review: Setup

A weight somewhere in the network

Review: Setup

$$
\begin{aligned}
& W^{(1)}, b^{(1)} \text { Loss } \\
& x \rightarrow W^{(1)} x+b^{(1)} \rightarrow h^{(1)} \rightarrow \text { Function } \\
& \text { Example: } \\
& \hline
\end{aligned}
$$

A weight somewhere in the network

Review: Setup

$$
\begin{aligned}
& W^{(1)}, b^{(1)} \text { Loss } \\
& x \rightarrow W^{(1)} x+b^{(1)} \rightarrow h^{(1)} \rightarrow \text { Function } \\
& \text { Example: } \\
& \hline
\end{aligned}
$$

A weight somewhere in the network

Review: Setup

How do we get the gradient? Backpropagation

A weight somewhere in the network

Backprop

It's just the chain rule

Backpropagation [Rumelhart, Hinton, Williams. Nature 1986]

Learning representations by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hinton \dagger \& Ronald J. Williams*
* Institute for Cognitive Science, C-015, University of California, San Diego, La Jolla, California 92093, USA
\dagger Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for networks of neurone-like units. The procedure repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector. As a result of the weight adjustments, internal 'hidden' units which are not part of the input or output come to represent important features of the task domain, and the regularities in the task are captured by the interactions of these units. The ability to create useful new features distinguishes back-propagation from earlier, simpler methods such as the perceptron-convergence procedure ${ }^{1}$.

There have been many attempts to design self-organizing neural networks. The aim is to find a powerful synaptic modification rule that will allow an arbitrarily connected neural network to develop an internal structure that is appropriate for
more difficult when we introduce hidden units whose actual or desired states are not specified by the task. (In perceptrons, there are 'feature analysers' between the input and output that are not true hidden units because their input connections are fixed by hand, so their states are completely determined by the input vector: they do not learn representations.) The learning procedure must decide under what circumstances the hidden units should be active in order to help achieve the desired input-output behaviour. This amounts to deciding what these units should represent. We demonstrate that a general purpose and relatively simple procedure is powerful enough to construct appropriate internal representations.

The simplest form of the learning procedure is for layered networks which have a layer of input units at the bottom; any number of intermediate layers; and a layer of output units at the top. Connections within a layer or from higher to lower layers are forbidden, but connections can skip intermediate layers. An input vector is presented to the network by setting the states of the input units. Then the states of the units in each layer are determined by applying equations (1) and (2) to the connections coming from lower layers. All units within a layer have their states set in parallel, but different layers have their states set sequentially, starting at the bottom and working upwards until the states of the output units are determined.

The total input, x_{j}, to unit j is a linear function of the outputs, y_{i}, of the units that are connected to j and of the weights, $w_{j i}$, on these connections

$$
\begin{equation*}
x_{j}=\sum y_{i} w_{j 1} \tag{1}
\end{equation*}
$$

Chain rule recap

I hope everyone remembers the chain rule:

$$
\frac{\partial L}{\partial x}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial x}
$$

Chain rule recap

I hope everyone remembers the chain rule:

$$
\frac{\partial L}{\partial x}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial x}
$$

Forward

$$
x \longrightarrow h \quad \longrightarrow \cdots
$$ propagation:

$\underset{\text { propagation: }}{\text { Backward }} \quad \frac{\partial L}{\partial x} \longleftarrow \frac{\partial L}{\partial h} \longleftarrow \ldots$

Chain rule recap

I hope everyone remembers the chain rule:

$$
\frac{\partial L}{\partial x}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial x}
$$

Forward $\quad x \rightarrow h \longrightarrow \ldots$ propagation:
$\underset{\text { propagation: }}{\text { Backward }} \quad \frac{\partial L}{\partial x} \longleftarrow \frac{\partial L}{\partial h} \longleftarrow \ldots$
(extends easily to multi-dimensional x and y)

Slide from Karpathy 2016

Slide from Karpathy 2016

Slide from Karpathy 2016

Slide from Karpathy 2016

Gradients add at branches

Gradients add at branches

Gradients add at branches

Gradients copy through sums

The gradient flows through both branches at "full strength"

Symmetry between forward and backward

Forward Propagation:

Forward Propagation:

Backward Propagation:

Forward Propagation:

Backward Propagation:

Forward Propagation:

Backward Propagation:

$$
\frac{\partial L}{\partial s} \leftarrow L
$$

Forward Propagation:

Backward Propagation:

Forward Propagation:

Backward Propagation:

$$
\begin{aligned}
& \frac{\partial L}{\partial \theta^{(n)}} \\
& \leftarrow \text { Function } \leftarrow \frac{\partial L}{\partial s} \leftarrow L
\end{aligned}
$$

Forward Propagation:

Backward Propagation:
$\frac{\frac{\partial L}{\partial \theta^{(1)}}}{\frac{\partial L}{\partial x} \leftarrow \square \text { Function } \leftarrow \frac{\partial L}{\partial h^{(1)}} \leftarrow \cdots \leftarrow \text { Function } \leftarrow \frac{\partial L}{\partial \theta^{(n)}} \leftarrow L}$

What to do for
 each layer

This is what we want for each layer
$\frac{\partial L}{\partial \theta^{(n)}}$
$\cdots \leftarrow \frac{\partial L}{\partial h^{(n-1)}} \leftarrow$ Layer $n \leftarrow \frac{\partial L}{\partial h^{(n)}} \leftarrow$ Layer $n+1 \leftarrow \cdots$

This is what we want for each layer

To compute it, we need to propagate this gradient
$\cdots \leftarrow \frac{\partial L}{\partial h^{(n-1)}} \leftarrow$ Layer $n \leftarrow \frac{\partial L}{\partial h^{(n)}} \leftarrow$ Layer $n+1 \leftarrow \cdots$

This is what we want for each layer

To compute it, we need to propagate this gradient
$\cdots \leftarrow \frac{\partial L}{\partial h^{(n-1)}} \leftarrow$ Layer $n \leftarrow \frac{\partial L}{\partial h^{(n)}} \leftarrow$ Layer $n+1 \leftarrow \cdots$
For each layer:

This is what we want for each layer

To compute it, we need to propagate this gradient
$\cdots \leftarrow \frac{\partial L}{\partial h^{(n-1)}} \leftarrow$ Layer $n \leftarrow \frac{\partial L}{\partial h^{(n)}} \leftarrow$ Layer $n+1 \leftarrow \cdots$
For each layer:

$$
\frac{\partial L}{\partial \theta^{(n)}}=\frac{\partial L}{\partial h^{(n)}} \cdot \frac{\partial h^{(n)}}{\partial \theta^{(n)}}
$$

What we want

This is what we want for each layer

To compute it, we need to propagate this gradient

For each layer:

$$
\frac{\partial L}{\partial \theta^{(n)}}=\frac{\partial L}{\partial h^{(n)}} \cdot \frac{\partial h^{(n)}}{\partial \theta^{(n)}}
$$

What we want

This is what we want for each layer

To compute it, we need to propagate this gradient

$$
\cdots \leftarrow \frac{\partial L}{\partial h^{(n-1)}} \leftarrow
$$

For each layer:

$$
\frac{\partial L}{\partial \theta^{(n)}}=\frac{\partial L}{\partial h^{(n)}} \cdot \frac{\partial h^{(n)}}{\partial \theta^{(n)}}
$$

What we want
This is just the local gradient of layer n

This is what we want for each layer

To compute it, we need to propagate this gradient

$$
\cdots \leftarrow \frac{\partial L}{\partial h^{(n-1)}} \leftarrow
$$

For each layer:

$$
\frac{\partial L}{\partial \theta^{(n)}}=\frac{\partial L}{\partial h^{(n)}} \cdot \frac{\partial h^{(n)}}{\partial \theta^{(n)}} \quad \frac{\partial L}{\partial h^{(n-1)}}=\frac{\partial L}{\partial h^{(n)}} \cdot \frac{\partial h^{(n)}}{\partial h^{(n-1)}}
$$

What we want
This is just the local gradient of layer n

This is what we want for each layer

To compute it, we need to propagate this gradient

$$
\cdots \leftarrow \frac{\partial L}{\partial h^{(n-1)}} \leftarrow
$$

For each layer:

$$
\frac{\partial L}{\partial \theta^{(n)}}=\frac{\partial L}{\partial h^{(n)}} \cdot \frac{\partial h^{(n)}}{\partial \theta^{(n)}}
$$

$$
\frac{\partial L}{\partial h^{(n-1)}}=\frac{\partial L}{\partial h^{(n)}} \cdot \frac{\partial h^{(n)}}{\partial h^{(n-1)}}
$$

What we want

This is what we want for each layer

To compute it, we need to propagate this gradient

$$
\cdots \leftarrow \frac{\partial L}{\partial h^{(n-1)}} \leftarrow
$$

For each layer:

$$
\frac{\partial L}{\partial \theta^{(n)}}=\frac{\partial L}{\partial h^{(n)}} \cdot \frac{\partial h^{(n)}}{\partial \theta^{(n)}}
$$

$$
\frac{\partial L}{\partial h^{(n-1)}}=\frac{\partial L}{\partial h^{(n)}} \cdot \frac{\partial h^{(n)}}{\partial h^{(n-1)}}
$$

What we want

Summary

For each layer, we compute:

[Propagated gradient to the left $]=$
[Propagated gradient from right]•[Local gradient]

Summary

For each layer, we compute:

[Propagated gradient to the left $]=$
[Propagated gradient from right]•[Local gradient]
\uparrow
(Can compute immediately)

Summary

For each layer, we compute:

[Propagated gradient to the left $]=$
[Propagated gradient from right]•[Local gradient]

(Received during backprop) (Can compute immediately)

30s cat picture break

Backprop in N-dimensions

just add more subscripts and more summations

Backprop in N-dimensions

just add more subscripts and more summations

$$
\frac{\partial L}{\partial x}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial x}
$$

x, h scalars
(L is always scalar)

Backprop in N-dimensions

just add more subscripts and more summations

$$
\begin{aligned}
& \frac{\partial L}{\partial x}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial x} \\
& \frac{\partial L}{\partial x_{j}}=\sum_{i} \frac{\partial L}{\partial h_{i}} \frac{\partial h_{i}}{\partial x_{j}}
\end{aligned}
$$

x, h scalars
(L is always scalar)
$x, h 1 \mathrm{D}$ arrays (vectors)

Backprop in N-dimensions

just add more subscripts and more summations

$$
\begin{aligned}
& \frac{\partial L}{\partial x}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial x} \\
& \frac{\partial L}{\partial x_{j}}=\sum_{i} \frac{\partial L}{\partial h_{i}} \frac{\partial h_{i}}{\partial x_{j}} \\
& \frac{\partial L}{\partial x_{a b}}=\sum_{i} \sum_{j} \frac{\partial L}{\partial h_{i j}} \frac{\partial h_{i j}}{\partial x_{a b}}
\end{aligned}
$$

x, h scalars
(L is always scalar)
$x, h 1 \mathrm{D}$ arrays (vectors)
$x, h 2 \mathrm{D}$ arrays

Backprop in N-dimensions

just add more subscripts and more summations

$$
\begin{array}{ll}
\frac{\partial L}{\partial x}=\frac{\partial L}{\partial h} \frac{\partial h}{\partial x} & \begin{array}{l}
x, h \text { scalars } \\
(L \text { is always scalar) }
\end{array} \\
\frac{\partial L}{\partial x_{j}}=\sum_{i} \frac{\partial L}{\partial h_{i}} \frac{\partial h_{i}}{\partial x_{j}} & x, h \text { 1D arrays (vectors) } \\
\frac{\partial L}{\partial x_{a b}}=\sum_{i} \sum_{j} \frac{\partial L}{\partial h_{i j}} \frac{\partial h_{i j}}{\partial x_{a b}} & x, h 2 \mathrm{D} \text { arrays } \\
\frac{\partial L}{\partial x_{a b c}}=\sum_{i} \sum_{j} \sum_{k} \frac{\partial L}{\partial h_{i j k}} \frac{\partial h_{i j k}}{\partial x_{a b c}} & x, h 3 \mathrm{D} \text { arrays }
\end{array}
$$

Examples

Example: Mean Subtraction (for a single input)

Example: Mean Subtraction (for a single input)

- Example layer: mean subtraction:

Example: Mean Subtraction (for a single input)

- Example layer: mean subtraction:

$$
h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}
$$

Example: Mean Subtraction (for a single input)

- Example layer: mean subtraction:

$$
h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k} \begin{gathered}
\text { (here, "i" and "k" } \\
\text { are channels) }
\end{gathered}
$$

Example: Mean Subtraction (for a single input)

- Example layer: mean subtraction:

$$
h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k} \quad \begin{gathered}
\text { (here, " } i \text { " and " } k \text { " } \\
\text { are channels) }
\end{gathered}
$$

- Always start with the chain rule (this one is for 1D):

$$
\frac{\partial L}{\partial x_{j}}=\sum_{i} \frac{\partial L}{\partial h_{i}} \frac{\partial h_{i}}{\partial x_{j}}
$$

Example: Mean Subtraction (for a single input)

- Example layer: mean subtraction:

$$
h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k} \quad \begin{gathered}
\text { (here, " } \mathrm{i} \text { " and " } k \text { " } \\
\text { are channels) }
\end{gathered}
$$

- Always start with the chain rule (this one is for 1D):

$$
\frac{\partial L}{\partial x_{j}}=\sum_{i} \frac{\partial L}{\partial h_{i}} \frac{\partial h_{i}}{\partial x_{j}}
$$

- Note: Be very careful with your subscripts! Introduce new variables and don't re-use letters.

Example: Mean Subtraction (for a single input)

Example: Mean Subtraction (for a single input)

- Forward: $h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$

Example: Mean Subtraction (for a single input)

- Forward: $h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Taking the derivative of the layer:

Example: Mean Subtraction (for a single input)

- Forward: $h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Taking the derivative of the layer: $\frac{\partial h_{i}}{\partial x_{j}}=\delta_{i j}-\frac{1}{D}$

Example: Mean Subtraction (for a single input)

- Forward: $h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Taking the derivative of the layer: $\frac{\partial h_{i}}{\partial x_{j}}=\delta_{i j}-\frac{1}{D}$

$$
\left(\delta_{i j}=\left\{\begin{array}{cc}
1 & i=j \\
0 & \text { else }
\end{array}\right)\right.
$$

Example: Mean Subtraction (for a single input)

- Forward: $h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Taking the derivative of the layer: $\frac{\partial h_{i}}{\partial x_{j}}=\delta_{i j}-\frac{1}{D}$

$$
\frac{\partial L}{\partial x_{j}}=\sum_{i} \frac{\partial L}{\partial h_{i}} \frac{\partial h_{i}}{\partial x_{j}} \quad \begin{gathered}
\text { (backprop } \\
\text { aka chain rule) }
\end{gathered}
$$

$$
\left(\delta_{i j}=\left\{\begin{array}{cc}
1 & i=j \\
0 & \text { else }
\end{array}\right)\right.
$$

Example: Mean Subtraction (for a single input)

- Forward: $h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Taking the derivative of the layer: $\frac{\partial h_{i}}{\partial x_{j}}=\delta_{i j}-\frac{1}{D}$

$$
\begin{aligned}
\frac{\partial L}{\partial x_{j}} & =\sum_{i} \frac{\partial L}{\partial h_{i}} \frac{\partial h_{i}}{\partial x_{j}} \quad \begin{array}{c}
\text { (backprop } \\
\text { aka chain rule) }
\end{array} \\
& =\sum_{i} \frac{\partial L}{\partial h_{i}}\left(\delta_{i j}-\frac{1}{D}\right)
\end{aligned}
$$

$$
\left(\delta_{i j}=\left\{\begin{array}{cc}
1 & i=j \\
0 & \text { else }
\end{array}\right)\right.
$$

Example: Mean Subtraction (for a single input)

- Forward: $h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Taking the derivative of the layer: $\frac{\partial h_{i}}{\partial x_{j}}=\delta_{i j}-\frac{1}{D}$

$$
\begin{aligned}
\frac{\partial L}{\partial x_{j}} & =\sum_{i} \frac{\partial L}{\partial h_{i}} \frac{\partial h_{i}}{\partial x_{j}} \quad \begin{array}{c}
\text { (backprop } \\
\text { aka chain rule) }
\end{array} \\
& =\sum_{i} \frac{\partial L}{\partial h_{i}}\left(\delta_{i j}-\frac{1}{D}\right) \\
& =\sum_{i} \frac{\partial L}{\partial h_{i}} \delta_{i j}-\frac{1}{D} \sum_{i} \frac{\partial L}{\partial h_{i}}
\end{aligned}
$$

$$
\left(\delta_{i j}=\left\{\begin{array}{cc}
1 & i=j \\
0 & \text { else }
\end{array}\right)\right.
$$

Example: Mean Subtraction (for a single input)

- Forward: $h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Taking the derivative of the layer: $\frac{\partial h_{i}}{\partial x_{j}}=\delta_{i j}-\frac{1}{D}$

$$
\begin{aligned}
\frac{\partial L}{\partial x_{j}} & =\sum_{i} \frac{\partial L}{\partial h_{i}} \frac{\partial h_{i}}{\partial x_{j}} \quad \begin{array}{c}
\text { (backprop } \\
\text { aka chain rule) }
\end{array} \\
& =\sum_{i} \frac{\partial L}{\partial h_{i}}\left(\delta_{i j}-\frac{1}{D}\right) \\
& =\sum_{i} \frac{\partial L}{\partial h_{i}} \delta_{i j}-\frac{1}{D} \sum_{i} \frac{\partial L}{\partial h_{i}} \\
& =\frac{\partial L}{\partial h_{j}}-\frac{1}{D} \sum_{i} \frac{\partial L}{\partial h_{i}}
\end{aligned}
$$

$$
\left(\delta_{i j}=\left\{\begin{array}{cc}
1 & i=j \\
0 & \text { else }
\end{array}\right)\right.
$$

Example: Mean Subtraction (for a single input)

- Forward: $h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Taking the derivative of the layer: $\frac{\partial h_{i}}{\partial x_{j}}=\delta_{i j}-\frac{1}{D}$

$$
\begin{aligned}
\frac{\partial L}{\partial x_{j}} & =\sum_{i} \frac{\partial L}{\partial h_{i}} \frac{\partial h_{i}}{\partial x_{j}} \quad \begin{array}{c}
\text { (backprop } \\
\text { aka chain rule) }
\end{array} \\
& =\sum_{i} \frac{\partial L}{\partial h_{i}}\left(\delta_{i j}-\frac{1}{D}\right) \\
& =\sum_{i} \frac{\partial L}{\partial h_{i}} \delta_{i j}-\frac{1}{D} \sum_{i} \frac{\partial L}{\partial h_{i}} \\
& =\frac{\partial L}{\partial h_{j}}-\frac{1}{D} \sum_{i} \frac{\partial L}{\partial h_{i}} \quad \text { Done! }
\end{aligned}
$$

$$
\left(\delta_{i j}=\left\{\begin{array}{cc}
1 & i=j \\
0 & \text { else }
\end{array}\right)\right.
$$

Example: Mean Subtraction (for a single input)

$$
\begin{aligned}
& h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k} \\
& \frac{\partial L}{\partial x_{i}}=\frac{\partial L}{\partial h_{i}}-\frac{1}{D} \sum_{k} \frac{\partial L}{\partial h_{k}}
\end{aligned}
$$

Example: Mean Subtraction (for a single input)

- Forward: $\quad h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Backward: $\frac{\partial L}{\partial x_{i}}=\frac{\partial L}{\partial h_{i}}-\frac{1}{D} \sum_{k} \frac{\partial L}{\partial h_{k}}$

Example: Mean Subtraction (for a single input)

- Forward: $\quad h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Backward: $\frac{\partial L}{\partial x_{i}}=\frac{\partial L}{\partial h_{i}}-\frac{1}{D} \sum_{k} \frac{\partial L}{\partial h_{k}}$
- In this case, they're identical operations!

Example: Mean Subtraction (for a single input)

- Forward: $\quad h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Backward: $\frac{\partial L}{\partial x_{i}}=\frac{\partial L}{\partial h_{i}}-\frac{1}{D} \sum_{k} \frac{\partial L}{\partial h_{k}}$
- In this case, they're identical operations!
- Usually the forwards pass and backwards pass are similar but not the same.

Example: Mean Subtraction (for a single input)

- Forward: $\quad h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$
- Backward: $\frac{\partial L}{\partial x_{i}}=\frac{\partial L}{\partial h_{i}}-\frac{1}{D} \sum_{k} \frac{\partial L}{\partial h_{k}}$
- In this case, they're identical operations!
- Usually the forwards pass and backwards pass are similar but not the same.
- Derive it by hand, and check it numerically

Example: Mean Subtraction (for a single input)

- Forward: $\quad h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$

Let's code this up in NumPy:

Example: Mean Subtraction (for a single input)

- Forward: $\quad h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$

Let's code this up in NumPy:
def forward(X): return X - np.mean(X, axis=1)

Example: Mean Subtraction (for a single input)

- Forward: $\quad h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$

Let's code this up in NumPy:
def forward(X):
Dimension mismatch return X - np.mean(X, axis=1)

Example: Mean Subtraction (for a single input)
 - Forward: $h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$

Let's code this up in NumPy:
def forward(X):
Dimension mismatch return X - np.mean(X, axis=1)

You need to broadcast properly:
def forward(X):
return X - np.mean(X, axis=1)[:, np.newaxis]

Example: Mean Subtraction (for a single input)

- Forward: $\quad h_{i}=x_{i}-\frac{1}{D} \sum_{k} x_{k}$

Let's code this up in NumPy:
def forward (X) : Dimension mismatch return X - np.mean(X, axis=1)

You need to broadcast properly:
def forward(X):
return X - np.mean(X, axis=1)[:, np.newaxis]
This also works:
def forward(X):
return X - np.mean(X, axis=1, keepdims=True)

Example: Mean Subtraction (for a single input)

The backward pass is easy:

```
def backward(dh):
    return forward(dh)
```

(Remember they're usually not the same)

Example: Euclidean Loss

Example: Euclidean Loss

- Euclidean loss layer:

Example: Euclidean Loss

- Euclidean loss layer:

Example: Euclidean Loss

- Euclidean loss layer:

$$
\begin{aligned}
& z \rightarrow \begin{array}{c}
\text { Euclidean } \\
\text { Loss }
\end{array} \\
& y \rightarrow L
\end{aligned} L_{i}=\frac{1}{2} \sum_{j}\left(z_{i, j}-y_{i, j}\right)^{2}
$$

Example: Euclidean Loss

- Euclidean loss layer:

$$
L_{i}=\frac{1}{2} \sum_{j}\left(z_{i, j}-y_{i, j}\right)^{2}
$$

("i") is the batch index, " j " is the channel)

Example: Euclidean Loss

- Euclidean loss layer:

$$
\begin{aligned}
& z \rightarrow \begin{array}{c}
\text { Euclidean } \\
y \rightarrow L
\end{array} \rightarrow L \quad L_{i}=\frac{1}{2} \sum_{j}\left(z_{i, j}-y_{i, j}\right)^{2}, ~
\end{aligned}
$$

("i") is the batch index, " j " is the channel)

- The total loss is the average over N examples:

Example: Euclidean Loss

- Euclidean loss layer:

$$
\begin{aligned}
& z \rightarrow \begin{array}{c}
\text { Euclidean } \\
y \rightarrow L \\
\text { Loss }
\end{array} \rightarrow L \quad L_{i}=\frac{1}{2} \sum_{j}\left(z_{i, j}-y_{i, j}\right)^{2}, ~
\end{aligned}
$$

("i") is the batch index, " j " is the channel)

- The total loss is the average over N examples:

$$
L=\frac{1}{N} \sum_{i} L_{i}
$$

Example: Euclidean Loss

Example: Euclidean Loss

- Used for regression, e.g. predicting an adjustment to box coordinates when detecting objects:

Example: Euclidean Loss

- Used for regression, e.g. predicting an adjustment to box coordinates when detecting objects:

> Bounding box regression from the R-CNN object detector [Girshick 2014]

Example: Euclidean Loss

- Used for regression, e.g. predicting an adjustment to box coordinates when detecting objects:

> Bounding box regression from the R-CNN object detector [Girshick 2014]

- Note: Can be unstable and other losses often work better. Alternatives: L1 distance (instead of L2), discretizing into category bins and using softmax

Example: Euclidean Loss

Example: Euclidean Loss

- Forward: $L_{i}=\frac{1}{2} \sum_{j}\left(z_{i, j}-y_{i, j}\right)^{2}$

Example: Euclidean Loss

- Forward: $L_{i}=\frac{1}{2} \sum_{j}\left(z_{i, j}-y_{i, j}\right)^{2}$
- Backward:

Example: Euclidean Loss

- Forward: $L_{i}=\frac{1}{2} \sum_{j}\left(z_{i, j}-y_{i, j}\right)^{2}$
- Backward: $\frac{\partial L_{i}}{\partial z_{i, j}}=z_{i, j}-y_{i, j}$

Example: Euclidean Loss

- Forward: $L_{i}=\frac{1}{2} \sum_{j}\left(z_{i, j}-y_{i, j}\right)^{2}$
- Backward: $\frac{\partial L_{i}}{\partial z_{i, j}}=z_{i, j}-y_{i, j}$

$$
\frac{\partial L_{i}}{\partial y_{i, j}}=y_{i, j}-z_{i, j}
$$

Example: Euclidean Loss

- Forward:

$$
L_{i}=\frac{1}{2} \sum_{j}\left(z_{i, j}-y_{i, j}\right)^{2}
$$

- Backward: $\frac{\partial L_{i}}{\partial z_{i, j}}=z_{i, j}-y_{i, j}$

$$
\frac{\partial L_{i}}{\partial y_{i, j}}=y_{i, j}-z_{i, j}
$$

- Q: If you scale the loss by C, what happens to gradient computed in the backwards pass?

Example: Euclidean Loss

- Forward:

$$
L_{i}=\frac{1}{2} \sum_{j}\left(z_{i, j}-y_{i, j}\right)^{2}
$$

- Backward: $\frac{\partial \overline{L_{i}}}{\partial z_{i, j}}=z_{i, j}-y_{i, j}$
(note that this is with

$$
\frac{\partial L_{i}}{\partial y_{i, j}}=y_{i, j}-z_{i, j}
$$

- Q: If you scale the loss by C, what happens to gradient computed in the backwards pass?

Example: Euclidean Loss

Example: Euclidean Loss

- Forward pass, for a batch of N inputs:

Example: Euclidean Loss

- Forward pass, for a batch of N inputs:

$$
L=\frac{1}{N} \sum_{i} L_{i}
$$

$$
L_{i}=\frac{1}{2} \sum_{j}\left(z_{i, j}-y_{i, j}\right)^{2}
$$

Example: Euclidean Loss

- Forward pass, for a batch of N inputs:

$$
L=\frac{1}{N} \sum_{i} L_{i}
$$

$$
L_{i}=\frac{1}{2} \sum_{j}\left(z_{i, j}-y_{i, j}\right)^{2}
$$

- Backward pass:

Example: Euclidean Loss

- Forward pass, for a batch of N inputs:

$$
L=\frac{1}{N} \sum_{i} L_{i}
$$

$$
L_{i}=\frac{1}{2} \sum_{j}\left(z_{i, j}-y_{i, j}\right)^{2}
$$

- Backward pass:

$$
\frac{\partial L}{\partial x_{i, j}}=\frac{z_{i, j}-y_{i, j}}{N}
$$

$$
\frac{\partial L}{\partial y_{i, j}}=\frac{y_{i, j}-z_{i, j}}{N}
$$

Example: Euclidean Loss

- Forward pass, for a batch of N inputs:

$$
L=\frac{1}{N} \sum_{i} L_{i}
$$

$$
L_{i}=\frac{1}{2} \sum_{j}\left(z_{i, j}-y_{i, j}\right)^{2}
$$

- Backward pass:

$$
\frac{\partial L}{\partial x_{i, j}}=\frac{z_{i, j}-y_{i, j}}{N}
$$

$$
\frac{\partial L}{\partial y_{i, j}}=\frac{y_{i, j}-z_{i, j}}{N}
$$

(You should be able to derive this)

Example: Softmax (for N inputs)
Remember Softmax?
It's a loss function for predicting categories?

Example: Softmax (for N inputs)

Remember Softmax?
It's a loss function for predicting categories?

$$
\begin{aligned}
& y_{i} \\
& x_{i} \rightarrow \cdots \rightarrow s_{i} \rightarrow \text { Softmax } \rightarrow p_{i} \rightarrow \begin{array}{c}
\text { Cross- } \\
\text { Entropy }
\end{array} \rightarrow L_{i}
\end{aligned}
$$

Example: Softmax (for N inputs)

Remember Softmax?

It's a loss function for predicting categories?

(ground truth labels)
(input) (scores) (probabilities)

Example: Softmax (for N inputs)

Remember Softmax?
It's a loss function for predicting categories?
(ground truth labels)
(here, "i" are
different examples)

$$
\begin{aligned}
& y_{i} \\
& x_{i} \rightarrow \cdots \rightarrow s_{i} \rightarrow \text { Softmax } \rightarrow p_{i} \rightarrow \begin{array}{c}
\text { Cross- } \\
\text { Entropy }
\end{array} \rightarrow L_{i}
\end{aligned}
$$

(input) (scores) (probabilities)
(loss)

Example: Softmax (for N inputs)

Remember Softmax?
It's a loss function for predicting categories?

(ground truth labels)

(here, "i" are
different examples)
y_{i}
$x_{i} \rightarrow \cdots \rightarrow s_{i} \rightarrow$ Softmax $\rightarrow p_{i} \rightarrow \begin{gathered}\text { Cross- } \\ \text { Entropy }\end{gathered} \rightarrow L_{i}$
(input) (scores) (probabilities)
(loss)
$p_{i, j}=\frac{e^{s_{i, j}}}{\sum_{k} e^{s_{i, k}}}$
(Softmax)

Example: Softmax (for N inputs)

Remember Softmax?
It's a loss function for predicting categories?

(ground truth labels)

(here, "i" are
different examples)
y_{i}
$x_{i} \rightarrow \cdots \rightarrow s_{i} \rightarrow$ Softmax $\rightarrow p_{i} \rightarrow \begin{gathered}\text { Cross- } \\ \text { Entropy }\end{gathered} \rightarrow L_{i}$
(input) (scores) (probabilities)
(loss)
$p_{i, j}=\frac{e^{s_{i, j}}}{\sum_{k} e^{s_{i, k}}}$
$L_{i}=-\log p_{i, y_{i}}$
(Softmax)
(Cross-entropy)

Example: Softmax (for N inputs)

Remember Softmax?
It's a loss function for predicting categories?

(ground truth labels)

(here, "i" are
different examples)
y_{i}
$x_{i} \rightarrow \cdots \rightarrow s_{i} \rightarrow$ Softmax $\rightarrow p_{i} \rightarrow \begin{gathered}\text { Cross- } \\ \text { Entropy }\end{gathered}$
$\rightarrow L_{i}$
(input) (scores) (probabilities) (loss)
$p_{i, j}=\frac{e^{s_{i, j}}}{\sum_{k} e^{s_{i, k}}} \quad L_{i}=-\log p_{i, y_{i}} \quad L=\frac{1}{N} \sum_{i} L_{i}$
(Softmax)
(Cross-entropy)
(Avg. over examples)

Example: Softmax (for N inputs)

Example: Softmax (for N inputs)

Derivative: $\frac{\partial L}{\partial s_{i, j}}=\frac{p_{i, j}-t_{i, j}}{N}$

Example: Softmax (for N inputs)

Derivative: $\frac{\partial L}{\partial s_{i, j}}=\frac{p_{i, j}-t_{i, j}}{N} \quad \begin{array}{r}\left.\text { where } \begin{array}{rll}t_{i}=\left[\begin{array}{lll}0 & \ldots & 1\end{array}\right] \\ \text { (Entry } y_{i} \text { set to 1) }\end{array}\right]\end{array}$

Example: Softmax (for N inputs)

Derivative: | $\frac{\partial L}{\partial s_{i, j}}$ |
| :--- |
| $=\frac{p_{i, j}-t_{i, j}}{N}$ | \($$
\begin{array}{r}\left.\text { where } \begin{array}{r}t_{i}=\left[\begin{array}{lll}0 & \ldots & 1\end{array}
$$ ··· 0\right.

(Entry y_{i} set to 1)\end{array}\right]\end{array}\)

Example: Softmax (for N inputs)

(You will derive this in PA5)

Example: Softmax (for N inputs)

(You will derive this in PA5)

Now we can continue backpropagating to the layer before "f"

What about the weights?

To get the derivative of the weights, use the chain rule again!

What about the weights?

To get the derivative of the weights, use the chain rule again!
Example: 2D weights, 1D bias, 1D hidden activations:

What about the weights?

To get the derivative of the weights, use the chain rule again!
Example: 2D weights, 1D bias, 1D hidden activations:

$$
\begin{gathered}
W, b_{\searrow} \\
x \rightarrow \text { Layer } \rightarrow h
\end{gathered}
$$

$$
h=h(x ; W)
$$

What about the weights?

To get the derivative of the weights, use the chain rule again!
Example: 2D weights, 1D bias, 1D hidden activations:

$$
\begin{aligned}
& W, b^{\prime} \\
x & \rightarrow \text { Layer } \\
\frac{\partial L}{\partial W_{i j}} & =\sum_{k} \frac{\partial L}{\partial h_{k}} \frac{\partial h_{k}}{\partial W_{i j}}
\end{aligned} \quad h=h(x ; W)
$$

What about the weights?

To get the derivative of the weights, use the chain rule again!
Example: 2D weights, 1D bias, 1D hidden activations:

$$
\begin{gathered}
x \rightarrow \text { Layer }_{W, b} \rightarrow h \\
\frac{\partial L}{\partial W_{i j}}=\sum_{k} \frac{\partial L}{\partial h_{k}} \frac{\partial h_{k}}{\partial W_{i j}} \quad \frac{\partial L}{\partial b_{i}}=\sum_{k} \frac{\partial L}{\partial h_{k}} \frac{\partial h_{k}}{\partial b_{i}}
\end{gathered}
$$

What about the weights?

To get the derivative of the weights, use the chain rule again!
Example: 2D weights, 1D bias, 1D hidden activations:

$$
\begin{aligned}
x & \rightarrow, b^{W} \\
\frac{\partial L}{\partial W_{i j}} & =\sum_{k} \frac{\partial L}{\partial h_{k}} \frac{\partial h_{k}}{\partial W_{i j}}
\end{aligned} \quad h=h(x ; W)
$$

(the number of subscripts and summations changes depending on your layer and parameter sizes)

ConvNets

They're just neural networks with 3D activations and weight sharing

What shape should the activations have?

- The input is an image, which is 3D
(RGB channel, height, width)

What shape should the activations have?

- The input is an image, which is 3D (RGB channel, height, width)
- We could flatten it to a 1D vector, but then we lose structure

What shape should the activations have?

- The input is an image, which is 3D (RGB channel, height, width)
- We could flatten it to a 1D vector, but then we lose structure
- What about keeping everything in 3D?

3D Activations

before:

(1D vectors)

Figure: Andrej Karpathy

3D Activations

before:
 layer
hidden layer
(1D vectors)
now:

(3D arrays)

3D Activations

All Neural Net activations arranged in 3 dimensions:

Figure: Andrej Karpathy

3D Activations

All Neural Net activations arranged in 3 dimensions:

For example, a CIFAR-10 image is a $3 \times 32 \times 32$ volume (3 depth — RGB channels, 32 height, 32 width)

Figure: Andrej Karpathy

3D Activations

 1D Activations:

Figure: Andrej Karpathy

3D Activations

1D Activations:

3D Activations:

Figure: Andrej Karpathy

3D Activations

- The input is $3 \times 32 \times 32$
- This neuron depends on a $3 \times 5 \times 5$ chunk of the input
- The neuron also has a $3 \times 5 \times 5$ set of weights and a bias (scalar)

3D Activations

Example: consider the region of the input " x^{r} ",

With output neuron h^{r}

Figure: Andrej Karpathy

3D Activations

Example: consider the region of the input " x^{r} ",

With output neuron h^{r}

Then the output is:

$$
h^{r}=\sum_{i j k} x_{i j k}^{r} W_{i j k}+b
$$

Figure: Andrej Karpathy

3D Activations

Example: consider the region of the input " x^{r} ",

With output neuron h^{r}

Then the output is:

$$
h^{r}=\sum_{i j k} x_{i j k}^{r} W_{i j k}+b
$$

Sum over 3 axes

3D Activations

Figure: Andrej Karpathy

3D Activations

Figure: Andrej Karpathy

3D Activations

With 2 output neurons

$$
\begin{aligned}
& h_{1}^{r}=\sum_{i j k} x_{i j k}^{r} W_{1 i j k}+b_{1} \\
& h_{2}^{r}=\sum_{i j k} x_{i j k}^{r} W_{2 i j k}+b_{2}
\end{aligned}
$$

Figure: Andrej Karpathy

3D Activations

With 2 output neurons

$$
\begin{aligned}
& h_{1}^{r}=\sum_{i j k} x_{i j k}^{r} k_{i j k}+h_{\text {■ }} \\
& h_{2}^{r}=\sum_{i j k} x_{i j k}^{r} W_{[2 j k}+h_{\text {白 }}
\end{aligned}
$$

Figure: Andrej Karpathy

3D Activations

Figure: Andrej Karpathy

3D Activations

We can keep adding more outputs

Figure: Andrej Karpathy

3D Activations

We can keep adding more outputs

These form a column in the output volume: [depth $\times 1 \times 1$]

Each neuron has its own 3D filter and own (scalar) bias

3D Activations

Now repeat this across the input

Figure: Andrej Karpathy

3D Activations

Now repeat this across the input

Weight sharing:

Each filter shares the same weights (but each depth index has its own set of weights)

3D Activations

Figure: Andrej Karpathy

3D Activations

With weight sharing, this is called convolution

Figure: Andrej Karpathy

3D Activations

With weight sharing, this is called convolution

Without weight sharing, this is called a locally
connected layer

3D Activations

Output of one filter

$\begin{array}{ll}\text { (input } & \text { (output } \\ \text { depth) } & \text { depth) }\end{array}$

One set of weights gives one slice in the output

To get a 3D output of depth D, use D different filters

In practice, ConvNets use many filters (~64 to 1024)

3D Activations

Output of one filter

(input
depth)

One set of weights gives one slice in the output

To get a 3D output of depth D, use D different filters

In practice, ConvNets use many filters (~64 to 1024)

All together, the weights are $\mathbf{4}$ dimensional:
(output depth, input depth, kernel height, kernel width)

3D Activations

Let's code this up in NumPy
out $[n, 0, r, c]=$

3D Activations

out $[n, 0, r, c]=$

$n^{\text {th }}$ example

3D Activations

Let's code this up in NumPy
out $[n, 0, r, c]=$

first filter
$n^{\text {th }}$ example

3D Activations

Let's code this up in NumPy

first filter
$n^{\text {th }}$ example

3D Activations

Let's code this up in NumPy
out $[n, 0, r, c]=n p . \operatorname{sum}($
$\uparrow \uparrow \overbrace{\text { output position }}^{\uparrow}$
first filter
$n^{\text {th }}$ example

3D Activations

Let's code this up in NumPy

```
out[n, 0, r, c] = np.sum(X[n, :, r0:r1, c0:c1]
    &
    output position
```

first filter
$n^{\text {th }}$ example

3D Activations

Let's code this up in NumPy

```
out[n, 0, r, c] = np.sum(X[n, :, r0:r1, c0:c1]
\(\uparrow \uparrow \prod_{\text {output position }}^{\uparrow}\)
first filter
\(n^{\text {th }}\) example
\(n^{\text {th }}\) example
```


3D Activations

Let's code this up in NumPy

3D Activations

Let's code this up in NumPy

3D Activations

Let's code this up in NumPy

```
out[n, 0, r, c] = np.sum(X[n, :, r0:r1, c0:c1] * W[0, :, :, :]) + b[0]
```


first filter
all input channels
$n^{\text {th }}$ example
$n^{\text {th }}$ example

3D Activations

Let's code this up in NumPy

```
out[n, 0, r, c] = np.sum(X[n, :, r0:r1, c0:c1] * W[0, :, :, :]) + b[0]
```


first filter
$n^{\text {th }}$ example

3D Activations

Let's code this up in NumPy

```
out \([n, 0, r, c]=n p \cdot \operatorname{sum}(X[n,: r 0: r 1, c 0: c 1] * W[0,:,:,:])+b[0]\)
```


first filter
$n^{\text {th }}$ example

3D Activations

Let's code this up in NumPy

/

32
3
out $[n, 0, r, c]=n p \cdot \operatorname{sum}(X[n,:, r 0: r 1, c 0: c 1] * W[0,:,:,:])+b[0]$

$n^{\text {th }}$ example

all positions
all channels
first filter

3D Activations

Let's code this up in NumPy

3D Activations

We can unravel the 3D cube and show each layer separately: (Input)

3D Activations

We can unravel the 3D cube and show each layer separately:

 (Input)
 one filter $=$ one depth slice $($ or activation map) $\quad(32$ filters, each $3 \times 5 \times 5)$

Activations:

Figure: Andrej Karpathy

3D Activations

We can unravel the 3D cube and show each layer separately:

 (Input)

Figure: Andrej Karpathy

3D Activations

We can unravel the 3D cube and show each layer separately:

 (Input)

Questions?

