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Backpropagation

Learning representations
by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hintont
& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA

T Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for
networks of neurone-like units. The procedure repeatedly adjusts
the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the
net and the desired output vector. As a result of the weight
adjustments, internal ‘hidden’ units which are not part of the input
or output come to represent important features of the task domain,
and the regularities in the task are captured by the interactions
of these units. The ability to create useful new features distin-
guishes back-propagation from earlier, simpler methods such as
the perceptron-convergence procedure'.

There have been many attempts to design self-organizing
neural networks. The aim is to find a powerful synaptic
modification rule that will allow an arbitrarily connected neural
network to develop an internal structure that is appropriate for

[Rumelhart, Hinton, Williams. Nature 1986}

more difficult when we introduce hidden units whose actual or
desired states are not specified by the task. (In perceptrons,
there are ‘feature analysers’ between the input and output that
are not true hidden units because their input connections are
fixed by hand, so their states are completely determined by the
input vector: they do not learn representations.) The learning
procedure must decide under what circumstances the hidden
units should be active in order to help achieve the desired
mput-—output behaviour. This amounts to deciding what these
units should represent. We demonstrate that a general purpose
and relatively simple procedure is powerful enough to construct
appropriate internal representations.

The simplest form of the learning procedure is for layered
networks which have a layer of input units at the bottom; any
number of intermediate layers; and a layer of output units at
the top. Connections within a layer or from higher to lower
layers are forbidden, but connections can skip intermediate
layers. An input vector is presented to the network by setting
the states of the input units. Then the states of the units in each
layer are determined by applying equations (1) and (2) to the
connections coming from lower layers. All units within a layer
have their states set in parallel, but different layers have their
states set sequentially, starting at the bottom and working
upwards until the states of the output units are determined.

The total input, x;, to unit j is a linear function of the outputs,

¥i, of the units that are connected to j and of the weights, wy,
on these connections

X =) y.wy (1)
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Chain rule recap

| hope everyone remembers the chain rule:

oL 0L dh
dx  oh Ox
Forward X — h — ..

propagation:

Backward JdL JdL
propagation:  Jy oh

(extends easily to multi-dimensional x and y)
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Gradients copy through sums

‘//'® Gradient
9

The gradient tlows through both branches at “full strength”
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want for each layer To compute it, we need to

0™ \ propagate this gradient
dL oL

ce < < Layern -« I_ayern+1 “— oo

ah(n 1) h(n)

us
n 1o
For each Iayer/ \

oL | | oL |[oh"™ | oL || o™
9<n> h(”) 9<n> h(n—l) — 8 G ' D

What we want
This is just the local gradient of layer n
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summary

For each layer, we compute:

| Propagated gradient to the left | =
| Propagated gradient from right |-[ Local gradient |

b \

(Received during backprop) (Can compute immediately)
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Backprop In N-dimensions

just add more subscripts and more summations

B_L _ JdL oh x,h scalars
ox oh dx (L is always scalar)
oL dL oh,
87 2 o, Ox. x,h 1D arrays (vectors)
dL oh,
= 22 oh, 0%, x,h 2D arrays

dL oh,
Bx _;‘Zzah ox, x,h 3D arrays

ijk
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are channels)
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Example: Mean Subtraction
(for a single input)

 Example layer: mean subtraction:

1 () 1 ))
h = x, Exk (here, “I” and "k
D~

are channels)

* Always start with the chain rule (this one is for 1D):

L < dL oh

dx; S dh, dx,

 Note: Be very careful with your subscripts!
Introduce new variables and don't re-use letters.
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* Jaking the derivative of the layer: B_h
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Example: Mean Subtraction
(for a single input)

1
* Forward: hi=xi——2xk
D k

. 1
* Taking the derivative of the layer: gh :5@;'_5
X .
JdL 9L Jh;  (backprop ] \
dx, “T'oh dx; aka chainrule) (e
BL( | ) 0, =1
:2— 5i,__ X 0 else )
~odh.\ " D
_y oLy 1§l
~oh. ' D*“oh
L 1 oL
= Done!

oh, D*“dh,
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similar but not the same.



Example: Mean Subtraction
(for a single input)

1
 Forward: h, =X, — —Zxk
D=

o Backward: 9L _9L 1§ 9dL

ox, oh D“on
* |nthis case, they're identical operations!

* Usually the forwards pass and backwards pass are
similar but not the same.

* Derive it by hand, and check it numerically



Example: Mean Subtraction
(for a single input)

1
* Forward: h,-=xi——2xk
D=

Let's code this up in NumPy:



Example: Mean Subtraction
(for a single input)

1
e Forward: hi =X, — _Zxk
D k

Let's code this up in NumPy;:

def forward(X):
return X - np.mean(X, axis=1)
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1
* Forward: hi=xi——zxk
D k

Let's code this up in NumPy;:

def forward(X): Dimension mismatch
return X - np.mean(X, axis=1)

You need to broadcast properly:

def forward(X):
return X - np.mean(X, axis=1)[:, np.newaxis]



Example: Mean Subtraction
(for a single input)

1
* Forward: hi=xi——zxk
D k

Let's code this up in NumPy;:

def forward(X): Dimension mismaitch
return X - np.mean(X, axis=1)

You need to broadcast properly:

def forward(X):
return X - np.mean(X, axis=1)[:, np.newaxis]

This also works:

def forward(X):
return X - np.mean(X, axis=1, keepdims=True)



Example: Mean Subtraction
(for a single input)

The backward pass is easy:

def backward(dh):
return forward(dh)

(Remember they’re usually not the same)
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* Euclidean loss layer:
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J

(“I” is the batch index,
‘" i1s the channel)
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(“I” is the batch index,
‘" i1s the channel)

* The total loss Is the average over N examples:
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* Euclidean loss layer:

—

Z - 1
Euclidean . 2
y — | 0SS —~ L Li — EZ(ZLJ _yi,j)
J

(“I” is the batch index,
‘" i1s the channel)

* The total loss Is the average over N examples:

1
L—NZLZ.
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Example: Euclidean LoSS

* Used for regression, e.g. predicting an adjustment to
box coordinates when detecting objects:

Bounding box regression
from the R-CNN object
detector [Girshick 2014]

original

 Note: Can be unstable and other losses often work
better. Alternatives: L1 distance (instead of L2),
discretizing Into category bins and using softmax
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» Forward: L. = %Z(ZM . )
J

oL,

* Backwara: ~=Z, =Y
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JL.
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» Forward: L. = %Z(ZM . )
J

 Backward: ——=z -y,
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JL. y
— I,] o Zz
ayi,j J J

* Q: If you scale the loss by C, what happens to
gradient computed in the backwards pass”?



Example: Euclidean LoSS

» Forward: L. = %Z(Zi,]‘ . )
J

aZz J > ! L :
’ (note that this is with
3 respect to Li, not L)
- = Yij T <ij
ayi,j

* Q: If you scale the loss by C, what happens to
gradient computed in the backwards pass”?
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* Forward pass, for a batch of N inputs:
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Example: Euclidean LoSS

* Forward pass, for a batch of N inputs:
L=_%1 L= ’
i J

 Backward pass:

aL _ Zi,]‘_yi,j aL yl,]—Z
ox. . N dy; . N

l,]



Example: Euclidean LoSS

* Forward pass, for a batch of N inputs:
L=1%1 L= ’
_EE i i _EZ(Zi,j_yi,j)
l J

 Backward pass:

aL _ Zi,j_yi,j aL y,,]—Z
axi,]. N ayl.,]. N

(You should be able to derive this)
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It’'s a loss function for predicting categories?

(ground truth labels) (here, “i” are
different examples)
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(input)  (scores) (probabilities) (loss)

e
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Example: Softmax (for N inputs)

Remember Softmax?
It’'s a loss function for predicting categories?

(ground truth labels) | (here, “i” are
different examples)
Y, —
Cross-
X; S Softmax D, Eirony Li
(input)  (scores) (probabilities) (loss)

e
Pij = Y e L;=-logp,, L= %Z L
k z

(Softmax) (Cross-entropy)  (Avg. over examples)
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Example: Softmax (for N inputs)

Y

i
X, — - —>—> Softmax

\

—>pi—>

Cross-
Entropy

Derivative: dL _ Pi;— b, where t. =10 ...1...0]
Js; . N

(You will derive this in FA5)

(Entry y. setto 1)



Example: Softmax (for N inputs)

Yi
X, — - —»—» Softmax | — pD. — Cross- | _, L.
l l l Entropy l

\

oL _ P —lij where t. =10 ...1...0]

Js; . N (Entry y; setto 1)

Derivative:

(You will derive this in FA5)

Now we can continue backpropagating to the layer before “f”
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What about the weights®

To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:
W.b

X —| Layer |— h h=h(x;W)
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What about the weights®

To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

W.b
X —| Layer |— h h=h(x;W)
aL EaLah oL ZaLah
doh, oW, ob. dh, ob,

(the number of subscripts and summations changes
depending on your layer and parameter sizes)



ConvNets

They're just neural networks with
3D activations and weight sharing
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X — Layer — h(l)—> Layer — h(z)—> coe —p f

\

- The Input Is an image, which is 3D
(RGB channel, height, width)
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(RGB channel, height, width)

- We could flatten it to a 1D vector, but then
we lose structure



What shape should the
activations have”

X — Layer — h(l)—> Layer — h(z)—> cos —p f

\

- The Input Is an image, which is 3D
(RGB channel, height, width)

- We could flatten it to a 1D vector, but then
we lose structure

- What about keeping everything in 3D7



3D Activations

before:

output layer
Input
layer hidden layer (1 D vectors)

Figure: Andrej Karpathy



3D Activations

before:

output layer
Input
layer hidden layer (1 D vectors)

NOW: I h, h,

y

(3D arrays)

Figure: Andrej Karpathy



3D Activations

All Neural Net
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arranged in 3
dimensions:

Figure: Andrej Karpathy

HEIGHT

y

WIDTH

DEPTH
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3D Activations

All Neural Net
activations

arranged in 3
dimensions:

HEIGHT

/ WIDTH

For example, a CIFAR-10 image is a 3x32x32 volume
(3 depth — RGB channels, 32 height, 32 width)

DEPTH

Figure: Andrej Karpathy



3D Activations

1D Activations:

Figure: Andrej Karpathy



3D Activations

1D Activations: 3D Activations:

a hidden neuron in
next layer

32

w\\\,%\

Figure: Andrej Karpathy



3D Activations

32

32

w\”’ o] \

Figure: Andrej Karpathy

a hidden neuron in
next layer

- The input Is 3x32x32

- This neuron depends

on a 3x5x5 chunk of
the Input

- The neuron also has a

3x5x5 set of weights
and a bias (scalar)



3D Activations

32

a hidden neuron in
next layer

hi’

32

S\

Figure: Andrej Karpathy

Example: consider the
region of the input “X’”

With output neuron A’



3D Activations

Example: consider the
32 region of the input “X’”

a hidden neuron in
next layer

With output neuron A’

h Then the output Is:

32

S\

h' = Exrzjkvvzjk +b

ijk

Figure: Andrej Karpathy



3D Activations

32

32

w\"’ o] k\

Figure: Andrej Karpathy

a hidden neuron in
next layer

hl"

Example: consider the
region of the input “X’”

With output neuron A’

Then the output Is:

h' = Exrzjkvvzjk +b

ijk

\

Sum over 3 axes



3D Activations

32

a hidden neuron in
next layer

h'

32

S\

Figure: Andrej Karpathy



3D Activations

32

a hidden neuron in
next layer

O
h, h,

32

S\

Figure: Andrej Karpathy



3D Activations

/ 32 With 2 output neurons
xr a hidden neuron in
next layer roo__ r
= h) = Zx ijkWIijk +b,
E O ijk
| L
5 hrl hrz
roo_ r
h 2 Zx ijkWZijk T bz
- ijk
3

Figure: Andrej Karpathy



3D Activations

2 With 2 output neurons

a hidden neuron in

>ICy>O W= 2% Wi+

ijk
r r
h, h, o r
2 Z’X i]’k‘/‘@ijk +
32 ik

S\

Figure: Andrej Karpathy



3D Activations

/ depth dlmensmn
T==00000
o

Figure: Andrej Karpathy




3D Activations

We can keep adding

more outputs
52 depth dimension
These form a column
=
/
3

>QQQQQ in the output volume:
Figure: Andrej Karpathy

[depth x 1 x 1]




3D Activations

We can keep adding

more outputs
52 depth dimension

These form a column

>Q OO0 in the output volume:
,\ [depth x 1 x 1]

- 1/
30 Each neuron has its
3 own 3D filter and

own (scalar) bias

Figure: Andrej Karpathy



3D Activations

. / Now repeat this
across the input

~=05000¢]

S

>

D sets of weights
(also called filters)

~ &77\

Figure: Andrej Karpathy



32

3D Activations

[

=\

32

—~50000

4

D sets of weights

(also called filters)

Figure: Andrej Karpathy

Now repeat this
across the input

Weight sharing:

Each filter shares
the same weights
(but each depth
iIndex has its own
set of weights)



3D Activations

./

~=05000¢]

S

D sets of weights
(also called filters)

~ &77\

Figure: Andrej Karpathy



3D Activations

With weight
/ sharing,
% this is called

Y convolution
—=0D0000}

S

>

D sets of weights
(also called filters)

\\/7\

Figure: Andrej Karpathy



32

3D Activations

[

=\

32

—~50000

4

D sets of weights

(also called filters)

Figure: Andrej Karpathy

With weight
sharing,

this i1s called
convolution

Without weight
sharing,

this Is called a
locally
connected layer



3D Activations

Output of one filter One set of vveights gives

/ one slice in the output

/ /‘/ To get a 3D output of depth D,
% use D different filters

/ In practice, ConvNets use
/ many filters (~64 to 1024)

(input (output
depth) depth)




3D Activations

Output of one filter One set of vveights gives

/ one slice in the output

/ /‘/ To get a 3D output of depth D,
% use D different filters

/ In practice, ConvNets use
/ many filters (~64 to 1024)

(input (output

depth) depth)

All together, the weights are 4 dimensional:
(output depth, input depth, kernel height, kernel width)
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32 /
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3D Activations

32

a hidden neuron in

@>@ Let’s code this up in NumPy

32

3

out[n, @, r, c] = np.sum(

Ry

output position

first filter

nth example
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32

a hidden neuron in

@>® Let’s code this up in NumPy

32
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3D Activations

32

a hidden neuron in

@>® Let’s code this up in NumPy

32

3

out[n, @, r, ¢c] = np.sum(X|n, :, r@:rl, cO:cl]

Ry A

output position

first filter

nth example nth example



3D Activations

32
a hidden neuron in

@>® Let’s code this up in NumPy

32

3

out[n, @, r, ¢c] = np.sum(X|n, :, r@:rl, cO:cl]

Ry ;e

output position

first filter all input channels

nth example nth example



3D Activations

32
a hidden neuron in

@>® Let’s code this up in NumPy

32

3

out[n, @, r, ¢c] = np.sum(X|n, :, r@:rl, cO:cl]

]V I\

output position input region

first filter all input channels

nth example nth example



3D Activations

32
a hidden neuron in

@>® Let’s code this up in NumPy

32

3

out[n, @, r, c] = np.sum(X[n, :, r@:rl, c@:cl] * WO, :, :, :]) + b[0O]

]V I\

output position input region

first filter all input channels

nth example nth example



3D Activations

32
a hidden neuron in

@>® Let’s code this up in NumPy

32

3

out[n, @, r, c] = np.sum(X[n, :, r@:rl, c@:cl] * WO, :, :, :]) + b[0O]
A

]V I\

output position input region

first filter all input channels

nth example nth example first filter



3D Activations

32

a hidden neuron in

@>® Let’s code this up in NumPy

32

3

out[n, @, r, c] = np.sum(X[n, :, r@:rl, c@:cl] * WO, :, :, :]) + b[0O]
A

SRy R

output position input region

first filter all input channels all channels

nth example nth example first filter



3D Activations

32

a hidden neuron in

@>® Let’s code this up in NumPy

32

3

out[n, @, r, ¢c] = np.sum(X|n, :, r@:rl, cO:cl]| * WO, :, :, :]) + b[0O]
A

]V TN N

output position INput region all positions

first filter all input channels all channels

nth example nth example first filter



3D Activations

32

a hidden neuron in

@>® Let’s code this up in NumPy

32

3

out[n, @, r, ¢c] = np.sum(X|n, :, r@:rl, cO:cl]| * WO, :, :, :]) + b[0O]
A

]V N TN

output position INput region all positions

first filter all input channels all channels

nth example nth example first filter



3D Activations

We can unravel the 3D cube and show each layer separately:
(Input)

PECINEERDNEIIA NN S EO RN EERAERG

- )
i
..B .L‘ h |
. - . N
-
: ~

Figure: Andrej Karpathy



3D Activations

We can unravel the 3D cube and show each layer separately:

(Input)
JRCINEERENNIIITAYEENESESARTINENRESR G

one filter = one depth slice (or activation map) (3 2 fi|’[erS, each 3)(5)(5)

Activations:

BB N2

EUAAEEES
ot
= NE w1

Figure: Andrej Karpathy




3D Activations

We can unravel the 3D cube and show each layer separately:
(Input)

Activations:

FLU O AR YL EF AR BT R L& P
one ﬂlterwepth slice (or activation map) (32 f”’[ers, each 3X5X5)

BN TENR

<

i

Figure: Andrej Karpathy




3D Activations

We can unravel the 3D cube and show each layer separately:

(Input)

o dilulllnnu::uan-llnnmaununlulluq/il

one ﬂlterwepth slice (or activation map) (
Acﬁvans:

32 filters, each 3x5x5)

<

igure: Andrej Karpathy



Questions?



