
http://brownsharpie.courtneygibbons.org/?p=90

Lecture 36:
Backprop and
ConvNets
CS 4670
Sean Bell

https://www.facebook.com/zuck/videos/
10102801434799001/?pnref=story

Helping the Blind
(posted yesterday)

https://www.facebook.com/zuck/videos/
10102801434799001/?pnref=story

“sunday night splurge”

Helping the Blind
(posted yesterday)

https://www.facebook.com/zuck/videos/
10102801434799001/?pnref=story

Review: Setup

x h(1)

L

Function Function h(2) ...

y

θ (1)

s

θ (2)

Review: Setup

x h(1)

L

Function Function h(2) ...

y

θ (1)

s

θ (2)

- Goal: Find a value for parameters (, , …), so that
the loss (L) is small

θ (1) θ (2)

Review: Setup

x h(1)

L

Function h(2) ...

y

s

θ (2)

Toy
Example:

W (1), b(1)

W (1)x + b(1)

Review: Setup

x h(1)

L

Function h(2) ...

y

s

θ (2)

L

W (1)
12

A weight somewhere in the network

Loss

Toy
Example:

W (1), b(1)

W (1)x + b(1)

Review: Setup

x h(1)

L

Function h(2) ...

y

s

θ (2)

L

W (1)
12

A weight somewhere in the network

Loss

Toy
Example:

W (1), b(1)

W (1)x + b(1)

Review: Setup

x h(1)

L

Function h(2) ...

y

s

θ (2)

L

W (1)
12

A weight somewhere in the network

Loss

Toy
Example:

W (1), b(1)

W (1)x + b(1)

Review: Setup

x h(1)

L

Function h(2) ...

y

s

θ (2)

L

W (1)
12

A weight somewhere in the network

Loss

Toy
Example:

W (1), b(1)

W (1)x + b(1)

Review: Setup

x h(1)

L

Function h(2) ...

y

s

θ (2)

∂L
∂W (1)

12

1

L

W (1)
12

A weight somewhere in the network

Loss

Toy
Example:

W (1), b(1)

W (1)x + b(1)

Review: Setup

x h(1)

L

Function h(2) ...

y

s

θ (2)

∂L
∂W (1)

12

1

(Gradient)
L

W (1)
12

A weight somewhere in the network

Loss

Toy
Example:

W (1), b(1)

W (1)x + b(1)

Review: Setup

x h(1)

L

Function h(2) ...

y

s

θ (2)

∂L
∂W (1)

12

1

(Gradient)
L

W (1)
12

A weight somewhere in the network

Loss

Toy
Example:

Take a step

W (1), b(1)

W (1)x + b(1)

Review: Setup

x h(1)

L

Function h(2) ...

y

s

θ (2)

L

W (1)
12

∂L
∂W (1)

12

1

A weight somewhere in the network

LossHow do we get the gradient? Backpropagation

(Gradient)
Toy

Example:

W (1), b(1)

W (1)x + b(1)

Backprop
It’s just the chain rule

Backpropagation 
[Rumelhart, Hinton, Williams. Nature 1986]

∂L
∂x

= ∂L
∂h

∂h
∂x

I hope everyone remembers the chain rule:

Chain rule recap

∂L
∂x

= ∂L
∂h

∂h
∂x

I hope everyone remembers the chain rule:

Chain rule recap

x h

∂L
∂h

∂L
∂x

Forward
propagation:

Backward
propagation:

...

...

∂L
∂x

= ∂L
∂h

∂h
∂x

I hope everyone remembers the chain rule:

(extends easily to multi-dimensional x and y)

Chain rule recap

x h

∂L
∂h

∂L
∂x

Forward
propagation:

Backward
propagation:

...

...

Slide from Karpathy 2016

Slide from Karpathy 2016

Slide from Karpathy 2016

Slide from Karpathy 2016

Slide from Karpathy 2016

Slide from Karpathy 2016

Gradients add at branches

Activation

Gradients add at branches

Activation Gradient

Gradients add at branches

Activation Gradient
+

Gradients copy through sums

+
Activation

Gradients copy through sums

+
Gradient

Activation

Gradients copy through sums

+
Gradient

Activation

Gradients copy through sums

+
Gradient

Activation

The gradient flows through both branches at “full strength”

Symmetry between forward and backward

+ +

Forward: copy
Backward: add

Forward: add
Backward: copy

x h(1) LFunction Function s...
θ (1) θ (n)

Forward Propagation:

x h(1) LFunction Function s...
θ (1) θ (n)

Forward Propagation:

Backward Propagation:

x h(1) LFunction Function s...
θ (1) θ (n)

Forward Propagation:

L

Backward Propagation:

x h(1) LFunction Function s...
θ (1) θ (n)

Forward Propagation:

L∂L
∂s

Backward Propagation:

x h(1) LFunction Function s...
θ (1) θ (n)

Forward Propagation:

L∂L
∂s

Backward Propagation:

Function

∂L
∂θ (n)

x h(1) LFunction Function s...
θ (1) θ (n)

Forward Propagation:

L∂L
∂s

...

Backward Propagation:

∂L
∂h(1)

Function

∂L
∂θ (n)

x h(1) LFunction Function s...
θ (1) θ (n)

Forward Propagation:

L∂L
∂s

...

Backward Propagation:

∂L
∂h(1)

Function

∂L
∂θ (n)

Function

∂L
∂θ (1)

∂L
∂x

What to do for
each layer

∂L
∂h(n)

∂L
∂h(n−1)

∂L
∂θ (n)

... Layer n Layer n +1 ...

∂L
∂h(n)

∂L
∂h(n−1)

∂L
∂θ (n)

... Layer n

This is what we
want for each layer

Layer n +1 ...

∂L
∂h(n)

∂L
∂h(n−1)

∂L
∂θ (n)

... Layer n

This is what we
want for each layer To compute it, we need to

propagate this gradient

Layer n +1 ...

∂L
∂h(n)

∂L
∂h(n−1)

∂L
∂θ (n)

... Layer n

This is what we
want for each layer To compute it, we need to

propagate this gradient

For each layer:

Layer n +1 ...

∂L
∂h(n)

∂L
∂h(n−1)

∂L
∂θ (n)

...

∂L
∂θ (n)

= ∂L
∂h(n)

⋅ ∂h
(n)

∂θ (n)

Layer n

This is what we
want for each layer To compute it, we need to

propagate this gradient

For each layer:

Layer n +1 ...

What we want

∂L
∂h(n)

∂L
∂h(n−1)

∂L
∂θ (n)

...

∂L
∂θ (n)

= ∂L
∂h(n)

⋅ ∂h
(n)

∂θ (n)

Layer n

This is what we
want for each layer To compute it, we need to

propagate this gradient

For each layer:

Layer n +1 ...

What we want

given to us

∂L
∂h(n)

∂L
∂h(n−1)

∂L
∂θ (n)

...

∂L
∂θ (n)

= ∂L
∂h(n)

⋅ ∂h
(n)

∂θ (n)

Layer n

This is what we
want for each layer To compute it, we need to

propagate this gradient

For each layer:

Layer n +1 ...

This is just the local gradient of layer n
What we want

given to us

∂L
∂h(n−1)

= ∂L
∂h(n)

⋅ ∂h
(n)

∂h(n−1)

∂L
∂h(n)

∂L
∂h(n−1)

∂L
∂θ (n)

...

∂L
∂θ (n)

= ∂L
∂h(n)

⋅ ∂h
(n)

∂θ (n)

Layer n

This is what we
want for each layer To compute it, we need to

propagate this gradient

For each layer:

Layer n +1 ...

This is just the local gradient of layer n
What we want

given to us

∂L
∂h(n−1)

= ∂L
∂h(n)

⋅ ∂h
(n)

∂h(n−1)

∂L
∂h(n)

∂L
∂h(n−1)

∂L
∂θ (n)

...

∂L
∂θ (n)

= ∂L
∂h(n)

⋅ ∂h
(n)

∂θ (n)

Layer n

This is what we
want for each layer To compute it, we need to

propagate this gradient

For each layer:

Layer n +1 ...

This is just the local gradient of layer n
What we want

given to us

∂L
∂h(n−1)

= ∂L
∂h(n)

⋅ ∂h
(n)

∂h(n−1)

∂L
∂h(n)

∂L
∂h(n−1)

∂L
∂θ (n)

...

∂L
∂θ (n)

= ∂L
∂h(n)

⋅ ∂h
(n)

∂θ (n)

Layer n

This is what we
want for each layer To compute it, we need to

propagate this gradient

For each layer:

Layer n +1 ...

This is just the local gradient of layer n
What we want

given to us

Summary

For each layer, we compute:

Propagated gradient from right[]⋅ Local gradient[]
Propagated gradient to the left[]=

Summary

For each layer, we compute:

Propagated gradient from right[]⋅ Local gradient[]
Propagated gradient to the left[]=

(Can compute immediately)

Summary

For each layer, we compute:

Propagated gradient from right[]⋅ Local gradient[]
Propagated gradient to the left[]=

(Can compute immediately)(Received during backprop)

30s cat picture break

http://stylonica.com/cat-pictures/

http://stylonica.com/cat-pictures/

Backprop in N-dimensions
just add more subscripts and more summations

Backprop in N-dimensions

∂L
∂x

= ∂L
∂h

∂h
∂x

x,h scalars
(L is always scalar)

just add more subscripts and more summations

Backprop in N-dimensions

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑ x,h 1D arrays (vectors)

∂L
∂x

= ∂L
∂h

∂h
∂x

x,h scalars
(L is always scalar)

just add more subscripts and more summations

Backprop in N-dimensions

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑ x,h 1D arrays (vectors)

∂L
∂xab

= ∂L
∂hij

∂hij
∂xabj

∑
i
∑ x,h 2D arrays

∂L
∂x

= ∂L
∂h

∂h
∂x

x,h scalars
(L is always scalar)

just add more subscripts and more summations

Backprop in N-dimensions

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑ x,h 1D arrays (vectors)

∂L
∂xab

= ∂L
∂hij

∂hij
∂xabj

∑
i
∑ x,h 2D arrays

∂L
∂xabc

= ∂L
∂hijk

∂hijk
∂xabck

∑
j
∑

i
∑ x,h 3D arrays

∂L
∂x

= ∂L
∂h

∂h
∂x

x,h scalars
(L is always scalar)

just add more subscripts and more summations

Examples

Example: Mean Subtraction
(for a single input)

• Example layer: mean subtraction:  

Example: Mean Subtraction
(for a single input)

• Example layer: mean subtraction:  

hi = xi −
1
D

xk
k
∑

Example: Mean Subtraction
(for a single input)

• Example layer: mean subtraction:  

hi = xi −
1
D

xk
k
∑ (here, “i” and “k”

are channels)

Example: Mean Subtraction
(for a single input)

• Example layer: mean subtraction:  

• Always start with the chain rule (this one is for 1D):  
 
 

hi = xi −
1
D

xk
k
∑ (here, “i” and “k”

are channels)

Example: Mean Subtraction
(for a single input)

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑

• Example layer: mean subtraction:  

• Always start with the chain rule (this one is for 1D):  
 
 

• Note: Be very careful with your subscripts!
Introduce new variables and don’t re-use letters.

hi = xi −
1
D

xk
k
∑ (here, “i” and “k”

are channels)

Example: Mean Subtraction
(for a single input)

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑

(backprop
aka chain rule)

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑

= ∂L
∂hi

δ ij −
1
D

⎛
⎝⎜

⎞
⎠⎟i

∑

= ∂L
∂hi

δ ij
i
∑ − 1

D
∂L
∂hii

∑

= ∂L
∂hj

− 1
D

∂L
∂hii

∑

Example: Mean Subtraction
(for a single input)

• Forward:

(backprop
aka chain rule)

hi = xi −
1
D

xk
k
∑

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑

= ∂L
∂hi

δ ij −
1
D

⎛
⎝⎜

⎞
⎠⎟i

∑

= ∂L
∂hi

δ ij
i
∑ − 1

D
∂L
∂hii

∑

= ∂L
∂hj

− 1
D

∂L
∂hii

∑

Example: Mean Subtraction
(for a single input)

• Forward:

• Taking the derivative of the layer:

(backprop
aka chain rule)

hi = xi −
1
D

xk
k
∑

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑

= ∂L
∂hi

δ ij −
1
D

⎛
⎝⎜

⎞
⎠⎟i

∑

= ∂L
∂hi

δ ij
i
∑ − 1

D
∂L
∂hii

∑

= ∂L
∂hj

− 1
D

∂L
∂hii

∑

Example: Mean Subtraction
(for a single input)

• Forward:

• Taking the derivative of the layer:

(backprop
aka chain rule)

hi = xi −
1
D

xk
k
∑

∂hi
∂x j

= δ ij −
1
D

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑

= ∂L
∂hi

δ ij −
1
D

⎛
⎝⎜

⎞
⎠⎟i

∑

= ∂L
∂hi

δ ij
i
∑ − 1

D
∂L
∂hii

∑

= ∂L
∂hj

− 1
D

∂L
∂hii

∑

Example: Mean Subtraction
(for a single input)

• Forward:

• Taking the derivative of the layer:

(backprop
aka chain rule)

hi = xi −
1
D

xk
k
∑

∂hi
∂x j

= δ ij −
1
D

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑

= ∂L
∂hi

δ ij −
1
D

⎛
⎝⎜

⎞
⎠⎟i

∑

= ∂L
∂hi

δ ij
i
∑ − 1

D
∂L
∂hii

∑

= ∂L
∂hj

− 1
D

∂L
∂hii

∑

δ ij =
1 i = j
0 else

⎧
⎨
⎪

⎩⎪

⎛

⎝
⎜

⎞

⎠
⎟

Example: Mean Subtraction
(for a single input)

• Forward:

• Taking the derivative of the layer:

(backprop
aka chain rule)

hi = xi −
1
D

xk
k
∑

∂hi
∂x j

= δ ij −
1
D

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑

= ∂L
∂hi

δ ij −
1
D

⎛
⎝⎜

⎞
⎠⎟i

∑

= ∂L
∂hi

δ ij
i
∑ − 1

D
∂L
∂hii

∑

= ∂L
∂hj

− 1
D

∂L
∂hii

∑

δ ij =
1 i = j
0 else

⎧
⎨
⎪

⎩⎪

⎛

⎝
⎜

⎞

⎠
⎟

Example: Mean Subtraction
(for a single input)

• Forward:

• Taking the derivative of the layer:

(backprop
aka chain rule)

hi = xi −
1
D

xk
k
∑

∂hi
∂x j

= δ ij −
1
D

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑

= ∂L
∂hi

δ ij −
1
D

⎛
⎝⎜

⎞
⎠⎟i

∑

= ∂L
∂hi

δ ij
i
∑ − 1

D
∂L
∂hii

∑

= ∂L
∂hj

− 1
D

∂L
∂hii

∑

δ ij =
1 i = j
0 else

⎧
⎨
⎪

⎩⎪

⎛

⎝
⎜

⎞

⎠
⎟

Example: Mean Subtraction
(for a single input)

• Forward:

• Taking the derivative of the layer:

(backprop
aka chain rule)

hi = xi −
1
D

xk
k
∑

∂hi
∂x j

= δ ij −
1
D

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑

= ∂L
∂hi

δ ij −
1
D

⎛
⎝⎜

⎞
⎠⎟i

∑

= ∂L
∂hi

δ ij
i
∑ − 1

D
∂L
∂hii

∑

= ∂L
∂hj

− 1
D

∂L
∂hii

∑

δ ij =
1 i = j
0 else

⎧
⎨
⎪

⎩⎪

⎛

⎝
⎜

⎞

⎠
⎟

Example: Mean Subtraction
(for a single input)

• Forward:

• Taking the derivative of the layer:

(backprop
aka chain rule)

hi = xi −
1
D

xk
k
∑

∂hi
∂x j

= δ ij −
1
D

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑

= ∂L
∂hi

δ ij −
1
D

⎛
⎝⎜

⎞
⎠⎟i

∑

= ∂L
∂hi

δ ij
i
∑ − 1

D
∂L
∂hii

∑

= ∂L
∂hj

− 1
D

∂L
∂hii

∑

δ ij =
1 i = j
0 else

⎧
⎨
⎪

⎩⎪

⎛

⎝
⎜

⎞

⎠
⎟

Example: Mean Subtraction
(for a single input)

Done!

• Forward:

• Taking the derivative of the layer:

(backprop
aka chain rule)

hi = xi −
1
D

xk
k
∑

∂hi
∂x j

= δ ij −
1
D

∂L
∂x j

= ∂L
∂hi

∂hi
∂x ji

∑

= ∂L
∂hi

δ ij −
1
D

⎛
⎝⎜

⎞
⎠⎟i

∑

= ∂L
∂hi

δ ij
i
∑ − 1

D
∂L
∂hii

∑

= ∂L
∂hj

− 1
D

∂L
∂hii

∑

δ ij =
1 i = j
0 else

⎧
⎨
⎪

⎩⎪

⎛

⎝
⎜

⎞

⎠
⎟

Example: Mean Subtraction
(for a single input)

hi = xi −
1
D

xk
k
∑

∂L
∂xi

= ∂L
∂hi

− 1
D

∂L
∂hkk

∑

Example: Mean Subtraction
(for a single input)

• Forward:

• Backward:

hi = xi −
1
D

xk
k
∑

∂L
∂xi

= ∂L
∂hi

− 1
D

∂L
∂hkk

∑

Example: Mean Subtraction
(for a single input)

• Forward:

• Backward:

• In this case, they’re identical operations!

hi = xi −
1
D

xk
k
∑

∂L
∂xi

= ∂L
∂hi

− 1
D

∂L
∂hkk

∑

Example: Mean Subtraction
(for a single input)

• Forward:

• Backward:

• In this case, they’re identical operations!

• Usually the forwards pass and backwards pass are
similar but not the same.

hi = xi −
1
D

xk
k
∑

∂L
∂xi

= ∂L
∂hi

− 1
D

∂L
∂hkk

∑

Example: Mean Subtraction
(for a single input)

• Forward:

• Backward:

• In this case, they’re identical operations!

• Usually the forwards pass and backwards pass are
similar but not the same.

• Derive it by hand, and check it numerically

hi = xi −
1
D

xk
k
∑

∂L
∂xi

= ∂L
∂hi

− 1
D

∂L
∂hkk

∑

Example: Mean Subtraction
(for a single input)

hi = xi −
1
D

xk
k
∑

Let’s code this up in NumPy:

• Forward:

Example: Mean Subtraction
(for a single input)

hi = xi −
1
D

xk
k
∑

Let’s code this up in NumPy:

• Forward:

Example: Mean Subtraction
(for a single input)

hi = xi −
1
D

xk
k
∑

Let’s code this up in NumPy:
Dimension mismatch

• Forward:

Example: Mean Subtraction
(for a single input)

hi = xi −
1
D

xk
k
∑

Let’s code this up in NumPy:
Dimension mismatch

You need to broadcast properly:

• Forward:

Example: Mean Subtraction
(for a single input)

hi = xi −
1
D

xk
k
∑

Let’s code this up in NumPy:
Dimension mismatch

You need to broadcast properly:

This also works:

• Forward:

Example: Mean Subtraction
(for a single input)

Example: Mean Subtraction
(for a single input)

The backward pass is easy:

(Remember they’re usually not the same)

Example: Euclidean Loss

• Euclidean loss layer:  
 
 
 
 
 

Example: Euclidean Loss

• Euclidean loss layer:  
 
 
 
 
 

Example: Euclidean Loss

y L
z Euclidean 

Loss

• Euclidean loss layer:  
 
 
 
 
 

Example: Euclidean Loss

y L
z Euclidean 

Loss Li =
1
2

(zi, j − yi, j)
2

j
∑

• Euclidean loss layer:  
 
 
 
 
 

Example: Euclidean Loss

y L
z Euclidean 

Loss Li =
1
2

(zi, j − yi, j)
2

j
∑

(“i” is the batch index,  
“j” is the channel)

• Euclidean loss layer:  
 
 
 
 
 

• The total loss is the average over N examples:

Example: Euclidean Loss

y L
z Euclidean 

Loss Li =
1
2

(zi, j − yi, j)
2

j
∑

(“i” is the batch index,  
“j” is the channel)

• Euclidean loss layer:  
 
 
 
 
 

• The total loss is the average over N examples:

Example: Euclidean Loss

L = 1
N

Li
i
∑

y L
z Euclidean 

Loss Li =
1
2

(zi, j − yi, j)
2

j
∑

(“i” is the batch index,  
“j” is the channel)

Example: Euclidean Loss

• Used for regression, e.g. predicting an adjustment to
box coordinates when detecting objects: 
 
 
 
 
 
 
 

Example: Euclidean Loss

• Used for regression, e.g. predicting an adjustment to
box coordinates when detecting objects: 
 
 
 
 
 
 
 

Example: Euclidean Loss

Bounding box regression
from the R-CNN object

detector [Girshick 2014]

• Used for regression, e.g. predicting an adjustment to
box coordinates when detecting objects: 
 
 
 
 
 
 
 

• Note: Can be unstable and other losses often work
better. Alternatives: L1 distance (instead of L2),
discretizing into category bins and using softmax

Example: Euclidean Loss

Bounding box regression
from the R-CNN object

detector [Girshick 2014]

Example: Euclidean Loss

• Forward:

Example: Euclidean Loss

Li =
1
2

(zi, j − yi, j)
2

j
∑

• Forward:

• Backward:

Example: Euclidean Loss

Li =
1
2

(zi, j − yi, j)
2

j
∑

• Forward:

• Backward:

Example: Euclidean Loss

Li =
1
2

(zi, j − yi, j)
2

j
∑

∂Li
∂zi, j

= zi, j − yi, j

• Forward:

• Backward:

Example: Euclidean Loss

Li =
1
2

(zi, j − yi, j)
2

j
∑

∂Li
∂zi, j

= zi, j − yi, j

∂Li
∂yi, j

= yi, j − zi, j

• Forward:

• Backward:

• Q: If you scale the loss by C, what happens to
gradient computed in the backwards pass?

Example: Euclidean Loss

Li =
1
2

(zi, j − yi, j)
2

j
∑

∂Li
∂zi, j

= zi, j − yi, j

∂Li
∂yi, j

= yi, j − zi, j

• Forward:

• Backward:

• Q: If you scale the loss by C, what happens to
gradient computed in the backwards pass?

Example: Euclidean Loss

Li =
1
2

(zi, j − yi, j)
2

j
∑

∂Li
∂zi, j

= zi, j − yi, j

∂Li
∂yi, j

= yi, j − zi, j

(note that this is with
respect to Li, not L)

Example: Euclidean Loss

• Forward pass, for a batch of N inputs:

Example: Euclidean Loss

• Forward pass, for a batch of N inputs:

Example: Euclidean Loss

Li =
1
2

(zi, j − yi, j)
2

j
∑L = 1

N
Li

i
∑

• Forward pass, for a batch of N inputs:

• Backward pass:

Example: Euclidean Loss

Li =
1
2

(zi, j − yi, j)
2

j
∑L = 1

N
Li

i
∑

• Forward pass, for a batch of N inputs:

• Backward pass:

Example: Euclidean Loss

Li =
1
2

(zi, j − yi, j)
2

j
∑L = 1

N
Li

i
∑

∂L
∂xi, j

=
zi, j − yi, j
N

∂L
∂yi, j

=
yi, j − zi, j
N

• Forward pass, for a batch of N inputs:

• Backward pass:

Example: Euclidean Loss

Li =
1
2

(zi, j − yi, j)
2

j
∑L = 1

N
Li

i
∑

∂L
∂xi, j

=
zi, j − yi, j
N

∂L
∂yi, j

=
yi, j − zi, j
N

(You should be able to derive this)

Example: Softmax (for N inputs)
Remember Softmax?  

It’s a loss function for predicting categories?

Example: Softmax (for N inputs)
Remember Softmax?  

It’s a loss function for predicting categories?

xi ... si piSoftmax Li

yi
Cross-
Entropy

Example: Softmax (for N inputs)
Remember Softmax?  

It’s a loss function for predicting categories?

xi ... si piSoftmax Li

yi
Cross-
Entropy

(scores) (probabilities) (loss)(input)

(ground truth labels)

Example: Softmax (for N inputs)
Remember Softmax?  

It’s a loss function for predicting categories?

xi ... si piSoftmax Li

yi
Cross-
Entropy

(scores) (probabilities) (loss)(input)

(ground truth labels) (here, “i” are
different examples)

Example: Softmax (for N inputs)
Remember Softmax?  

It’s a loss function for predicting categories?

pi, j =
esi , j

esi ,k
k
∑

(Softmax)

xi ... si piSoftmax Li

yi
Cross-
Entropy

(scores) (probabilities) (loss)(input)

(ground truth labels) (here, “i” are
different examples)

Example: Softmax (for N inputs)
Remember Softmax?  

It’s a loss function for predicting categories?

pi, j =
esi , j

esi ,k
k
∑

(Softmax)

Li = − log pi,yi

(Cross-entropy)

xi ... si piSoftmax Li

yi
Cross-
Entropy

(scores) (probabilities) (loss)(input)

(ground truth labels) (here, “i” are
different examples)

Example: Softmax (for N inputs)
Remember Softmax?  

It’s a loss function for predicting categories?

pi, j =
esi , j

esi ,k
k
∑

(Softmax)

Li = − log pi,yi

(Cross-entropy)

xi ... si piSoftmax Li

yi
Cross-
Entropy

(scores) (probabilities) (loss)(input)

(ground truth labels) (here, “i” are
different examples)

L = 1
N

Li
i
∑

(Avg. over examples)

xi ... si piSoftmax Li

yi
Cross-
Entropy

Example: Softmax (for N inputs)

xi ... si piSoftmax Li

yi
Cross-
Entropy

∂L
∂si, j

=
pi, j − ti, j
N

Derivative:

Example: Softmax (for N inputs)

xi ... si piSoftmax Li

yi
Cross-
Entropy

∂L
∂si, j

=
pi, j − ti, j
N

Derivative: where ti = [0 ... 1 ... 0]
(Entry set to 1)yi

Example: Softmax (for N inputs)

xi ... si piSoftmax Li

yi
Cross-
Entropy

∂L
∂si, j

=
pi, j − ti, j
N

Derivative: where ti = [0 ... 1 ... 0]
(Entry set to 1)yi

Example: Softmax (for N inputs)

xi ... si piSoftmax Li

yi
Cross-
Entropy

∂L
∂si, j

=
pi, j − ti, j
N

Derivative: where ti = [0 ... 1 ... 0]
(Entry set to 1)yi

(You will derive this in PA5)

Example: Softmax (for N inputs)

xi ... si piSoftmax Li

yi
Cross-
Entropy

∂L
∂si, j

=
pi, j − ti, j
N

Derivative: where ti = [0 ... 1 ... 0]
(Entry set to 1)yi

(You will derive this in PA5)

Now we can continue backpropagating to the layer before “f”

Example: Softmax (for N inputs)

What about the weights?
To get the derivative of the weights, use the chain rule again!

What about the weights?
To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

What about the weights?
To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

x hLayer

W ,b

h = h(x;W)

What about the weights?
To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

x hLayer

W ,b

h = h(x;W)

∂L
∂Wij

= ∂L
∂hk

∂hk
∂Wijk

∑

What about the weights?
To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

x hLayer

W ,b

h = h(x;W)

∂L
∂Wij

= ∂L
∂hk

∂hk
∂Wijk

∑ ∂L
∂bi

= ∂L
∂hk

∂hk
∂bik

∑

What about the weights?
To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

x hLayer

W ,b

h = h(x;W)

∂L
∂Wij

= ∂L
∂hk

∂hk
∂Wijk

∑
(the number of subscripts and summations changes

depending on your layer and parameter sizes)

∂L
∂bi

= ∂L
∂hk

∂hk
∂bik

∑

ConvNets
They’re just neural networks with  

3D activations and weight sharing

What shape should the
activations have?

x h(1) fLayer Layer h(2) ...

- The input is an image, which is 3D  
(RGB channel, height, width)

What shape should the
activations have?

x h(1) fLayer Layer h(2) ...

- The input is an image, which is 3D  
(RGB channel, height, width)

- We could flatten it to a 1D vector, but then
we lose structure

What shape should the
activations have?

x h(1) fLayer Layer h(2) ...

- The input is an image, which is 3D  
(RGB channel, height, width)

- We could flatten it to a 1D vector, but then
we lose structure

- What about keeping everything in 3D?

3D Activations

(1D vectors)

(3D arrays)

x h1 h2

Figure: Andrej Karpathy

3D Activations

(1D vectors)

(3D arrays)

x h1 h2

Figure: Andrej Karpathy

3D Activations

Figure: Andrej Karpathy

3D Activations

For example, a CIFAR-10 image is a 3x32x32 volume
(3 depth — RGB channels, 32 height, 32 width)

Figure: Andrej Karpathy

3D Activations
1D Activations:

Figure: Andrej Karpathy

3D Activations
1D Activations: 3D Activations:

Figure: Andrej Karpathy

3D Activations

5

5

- The input is 3x32x32  

- This neuron depends
on a 3x5x5 chunk of
the input 

- The neuron also has a
3x5x5 set of weights
and a bias (scalar)

Figure: Andrej Karpathy

3D Activations

5

5

Example: consider the
region of the input “ ”

xr

hr

xr

With output neuron hr

Figure: Andrej Karpathy

3D Activations

5

5

Example: consider the
region of the input “ ”

xr

hr

xr

With output neuron hr

hr = xrijkWijk
ijk
∑ + b

Then the output is:

Figure: Andrej Karpathy

3D Activations

5

5

Example: consider the
region of the input “ ”

xr

hr

xr

With output neuron hr

hr = xrijkWijk
ijk
∑ + b

Then the output is:

Sum over 3 axes
Figure: Andrej Karpathy

3D Activations

5

5

xr

hr1

Figure: Andrej Karpathy

3D Activations

5

5

xr

hr1 h
r
2

Figure: Andrej Karpathy

3D Activations

5

5

xr

hr1 h
r
2

hr1 = xrijkW1ijk
ijk
∑ + b1

With 2 output neurons

hr2 = xrijkW2ijk
ijk
∑ + b2

Figure: Andrej Karpathy

3D Activations

5

5

xr

hr1 h
r
2

hr1 = xrijkW1ijk
ijk
∑ + b1

With 2 output neurons

hr2 = xrijkW2ijk
ijk
∑ + b2

Figure: Andrej Karpathy

3D Activations

Figure: Andrej Karpathy

3D Activations
We can keep adding
more outputs

These form a column
in the output volume:
[depth x 1 x 1]

Figure: Andrej Karpathy

3D Activations

Each neuron has its
own 3D filter and
own (scalar) bias

We can keep adding
more outputs

These form a column
in the output volume:
[depth x 1 x 1]

Figure: Andrej Karpathy

3D Activations
Now repeat this
across the input

D sets of weights
(also called filters)

Figure: Andrej Karpathy

3D Activations
Now repeat this
across the input

Each filter shares
the same weights
(but each depth
index has its own

set of weights)

Weight sharing:

D sets of weights
(also called filters)

Figure: Andrej Karpathy

3D Activations

Figure: Andrej Karpathy

D sets of weights
(also called filters)

3D Activations
With weight
sharing,
this is called
convolution

Figure: Andrej Karpathy

D sets of weights
(also called filters)

3D Activations
With weight
sharing,
this is called
convolution

Without weight
sharing,
this is called a
locally
connected layer

Figure: Andrej Karpathy

D sets of weights
(also called filters)

3D Activations
One set of weights gives
one slice in the output

To get a 3D output of depth D,
use D different filters

In practice, ConvNets use
many filters (~64 to 1024)

(input
depth)

(output
depth)

Output of one filter

3D Activations
One set of weights gives
one slice in the output

To get a 3D output of depth D,
use D different filters

All together, the weights are 4 dimensional:
(output depth, input depth, kernel height, kernel width)

In practice, ConvNets use
many filters (~64 to 1024)

(input
depth)

(output
depth)

Output of one filter

3D Activations

Let’s code this up in NumPy

nth example

3D Activations

Let’s code this up in NumPy

nth example

first filter

3D Activations

Let’s code this up in NumPy

nth example

first filter
output position

3D Activations

Let’s code this up in NumPy

nth example

first filter
output position

3D Activations

Let’s code this up in NumPy

nth example

first filter
output position

3D Activations

Let’s code this up in NumPyxr

nth example

first filter
output position

nth example

3D Activations

Let’s code this up in NumPyxr

nth example

first filter
output position

nth example

all input channels

3D Activations

Let’s code this up in NumPyxr

nth example

first filter
output position

nth example

all input channels

input region

3D Activations

Let’s code this up in NumPyxr

nth example

first filter
output position

nth example

all input channels

input region

3D Activations

Let’s code this up in NumPyxr

nth example

first filter
output position

nth example

all input channels

input region

first filter

3D Activations

Let’s code this up in NumPyxr

nth example

first filter
output position

nth example

all input channels

input region

first filter

all channels

3D Activations

Let’s code this up in NumPyxr

nth example

first filter
output position

nth example

all input channels

input region

first filter

all channels
all positions

3D Activations

Let’s code this up in NumPyxr

nth example

first filter
output position

nth example

all input channels

input region

first filter

all channels
all positions

bias

3D Activations

Let’s code this up in NumPyxr

We can unravel the 3D cube and show each layer separately:

Figure: Andrej Karpathy

(32 filters, each 3x5x5)

(Input)

3D Activations

We can unravel the 3D cube and show each layer separately:

Figure: Andrej Karpathy

(32 filters, each 3x5x5)

(Input)

3D Activations

Figure: Andrej Karpathy

(32 filters, each 3x5x5)

We can unravel the 3D cube and show each layer separately:
(Input)

3D Activations

3D Activations

Figure: Andrej Karpathy

(32 filters, each 3x5x5)

We can unravel the 3D cube and show each layer separately:
(Input)

Questions?

