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[Rumelhart, Hinton, Williams.  Nature 1986]



∂L
∂x

= ∂L
∂h

∂h
∂x

I hope everyone remembers the chain rule:

Chain rule recap



∂L
∂x

= ∂L
∂h

∂h
∂x

I hope everyone remembers the chain rule:

Chain rule recap

x h

∂L
∂h

∂L
∂x

Forward 
propagation:

Backward 
propagation:

...

...



∂L
∂x

= ∂L
∂h

∂h
∂x

I hope everyone remembers the chain rule:

(extends easily to multi-dimensional x and y)

Chain rule recap

x h

∂L
∂h

∂L
∂x

Forward 
propagation:

Backward 
propagation:

...

...



Slide from Karpathy 2016



Slide from Karpathy 2016



Slide from Karpathy 2016



Slide from Karpathy 2016



Slide from Karpathy 2016



Slide from Karpathy 2016



Gradients add at branches

Activation



Gradients add at branches

Activation Gradient



Gradients add at branches

Activation Gradient
+



Gradients copy through sums

+
Activation



Gradients copy through sums

+
Gradient

Activation



Gradients copy through sums

+
Gradient

Activation



Gradients copy through sums

+
Gradient

Activation

The gradient flows through both branches at “full strength”
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Summary

For each layer, we compute:

Propagated gradient from right[ ]⋅ Local gradient[ ]
Propagated gradient to the left[ ]=

(Can compute immediately)(Received during backprop)
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The backward pass is easy:

(Remember they’re usually not the same)
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• Euclidean loss layer:  
 
 
 
 
 

• The total loss is the average over N examples:

Example: Euclidean Loss

L = 1
N

Li
i
∑

y L
z Euclidean 

Loss Li =
1
2

(zi, j − yi, j )
2

j
∑

(“i” is the batch index,  
“j” is the channel)
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• Used for regression, e.g. predicting an adjustment to 
box coordinates when detecting objects: 
 
 
 
 
 
 
 

• Note: Can be unstable and other losses often work 
better.  Alternatives: L1 distance (instead of L2), 
discretizing into category bins and using softmax

Example: Euclidean Loss

Bounding box regression 
from the R-CNN object 

detector [Girshick 2014]
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• Forward:

• Backward:

• Q: If you scale the loss by C, what happens to 
gradient computed in the backwards pass?

Example: Euclidean Loss

Li =
1
2

(zi, j − yi, j )
2

j
∑

∂Li
∂zi, j

= zi, j − yi, j

∂Li
∂yi, j

= yi, j − zi, j

(note that this is with 
respect to Li, not L)
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• Forward pass, for a batch of N inputs:

• Backward pass:

Example: Euclidean Loss

Li =
1
2

(zi, j − yi, j )
2

j
∑L = 1

N
Li

i
∑

∂L
∂xi, j

=
zi, j − yi, j
N

∂L
∂yi, j

=
yi, j − zi, j
N

(You should be able to derive this)
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Example: Softmax (for N inputs)
Remember Softmax?  

It’s a loss function for predicting categories?

pi, j =
esi , j

esi ,k
k
∑

(Softmax)

Li = − log pi,yi

(Cross-entropy)

xi ... si piSoftmax Li

yi
Cross- 
Entropy

(scores) (probabilities) (loss)(input)

(ground truth labels) (here, “i” are 
different examples)

L = 1
N

Li
i
∑

(Avg. over examples)
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Example: Softmax (for N inputs)



xi ... si piSoftmax Li

yi
Cross- 
Entropy

∂L
∂si, j

=
pi, j − ti, j
N

Derivative: where ti = [0 ... 1 ... 0]
(Entry      set to 1)yi

(You will derive this in PA5)

Now we can continue backpropagating to the layer before “f”

Example: Softmax (for N inputs)
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What about the weights?
To get the derivative of the weights, use the chain rule again!

Example: 2D weights, 1D bias, 1D hidden activations:

x hLayer

W ,b

h = h(x;W )

∂L
∂Wij

= ∂L
∂hk

∂hk
∂Wijk

∑
(the number of subscripts and summations changes 

depending on your layer and parameter sizes)

∂L
∂bi

= ∂L
∂hk

∂hk
∂bik

∑



ConvNets
They’re just neural networks with  

3D activations and weight sharing



What shape should the 
activations have?

x h(1) fLayer Layer h(2) ...

- The input is an image, which is 3D  
(RGB channel, height, width)



What shape should the 
activations have?

x h(1) fLayer Layer h(2) ...

- The input is an image, which is 3D  
(RGB channel, height, width)

- We could flatten it to a 1D vector, but then 
we lose structure



What shape should the 
activations have?

x h(1) fLayer Layer h(2) ...

- The input is an image, which is 3D  
(RGB channel, height, width)

- We could flatten it to a 1D vector, but then 
we lose structure

- What about keeping everything in 3D?
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3D Activations

For example, a CIFAR-10 image is a 3x32x32 volume 
(3 depth — RGB channels, 32 height, 32 width)

Figure: Andrej Karpathy
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3D Activations
1D Activations: 3D Activations:

Figure: Andrej Karpathy



3D Activations

5

5

- The input is 3x32x32  

- This neuron depends 
on a 3x5x5 chunk of 
the input 

- The neuron also has a 
3x5x5 set of weights 
and a bias (scalar)

Figure: Andrej Karpathy
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3D Activations

5

5

Example: consider the 
region of the input “    ”

xr

hr

xr

With output neuron hr

hr = xrijkWijk
ijk
∑ + b

Then the output is:

Sum over 3 axes
Figure: Andrej Karpathy
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3D Activations

Each neuron has its 
own 3D filter and 
own (scalar) bias

We can keep adding 
more outputs

These form a column 
in the output volume: 
[depth x 1 x 1]

Figure: Andrej Karpathy
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3D Activations
Now repeat this 
across the input

Each filter shares 
the same weights 
(but each depth 
index has its own 

set of weights)

Weight sharing:

D sets of weights 
(also called filters)

Figure: Andrej Karpathy
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sharing, 
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3D Activations
With weight 
sharing, 
this is called 
convolution

Without weight 
sharing, 
this is called a 
locally 
connected layer

Figure: Andrej Karpathy

D sets of weights 
(also called filters)



3D Activations
One set of weights gives 
one slice in the output

To get a 3D output of depth D, 
use D different filters

In practice, ConvNets use 
many filters (~64 to 1024)
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3D Activations
One set of weights gives 
one slice in the output

To get a 3D output of depth D, 
use D different filters

All together, the weights are 4 dimensional: 
(output depth, input depth, kernel height, kernel width)

In practice, ConvNets use 
many filters (~64 to 1024)

(input 
depth)

(output 
depth)

Output of one filter
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nth example

first filter
output position

nth example

all input channels

input region

first filter

all channels
all positions

bias

3D Activations

Let’s code this up in NumPyxr
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3D Activations

Figure: Andrej Karpathy

(32 filters, each 3x5x5)

We can unravel the 3D cube and show each layer separately:
(Input)



Questions?


